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ABSTRACT 
An optimal data partitioning in parallel/distributed implementation of clustering algorithms is a necessary 

computation as it ensures independent task completion, fair distribution, less number of affected points and 

better & faster merging. Though partitioning using Kd-Tree is being conventionally used in academia, it suffers 

from performance drenches and bias (non equal distribution) as dimensionality of data increases and hence is 

not suitable for practical use in industry where dimensionality can be of order of 100’s to 1000’s. To address 

these issues we propose two new partitioning techniques using existing mathematical models & study their 

feasibility, performance (bias and partitioning speed) & possible variants in choosing initial seeds. First method 

uses an n-dimensional hashed grid based approach which is based on mapping the points in space to a set of 

cubes which hashes the points. Second method uses a tree of voronoi planes where each plane corresponds to a 

partition. We found that grid based approach was computationally impractical, while using a tree of voronoi 

planes (using scalable K-Means++ initial seeds) drastically outperformed the Kd-tree tree method as 

dimensionality increased.  
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I. INTRODUCTION 
While profiling a hybrid (parallel & 

distributed) implementation of OPTICS (Goel et all., 

2015) algorithm we had an observation that over 

50% our threads were outperforming the rest by 

huge margins. Our method was to 1. partition 

existing data into x parts 2. treat each part as a 

separate input and run the parallel OPTICS thread on 

each 3. merge the resultant clusters. We used Kd –

tree (Bentley, 1975) to make partitions. K-d tree is a 

variance of binary tree where each node represents a 

data point in n-dimensional space. Every leaf node 

of k-d tree represents a splitting of a (n-1) 

dimensional hyper-plane resulting in two half-planes 

which can be thought of as partitions. Following 

method was used. 

1.  Start with dimension with highest variance and 

divide data set based on value points in that 

dimension only. Result is two different 

partitions. 

2. Repeat the process with next dimension of 

highest variance until desired numbers of 

partitions are made. 

A sample representation will look 

something like this 

 

 
Figure 1 : Kd-Tree Partitioning 

 

We observed various limitations. Assume x 

partitions, n data points,  m partitions , d dimensions 

1. Data scan was needed in every stage i.e. for 

getting m partitions we needed O(m) scans over 

same points again and again. 

2. Median finding was a costly operation of order 

O(n). However when executed for every non-

leaf node , the overall cost was of order O(mn) 

3. K-d tree doesn't guarantee considering every 

dimension. In-fact there it exhibits a bias 

towards a few dimensions of high variance, 

hence points in a partition can be relatively     
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far than points in different dimensions for a 

large d. This well lead to a poor clustering 

result. Also as the number of dimensions tend to 

increase, the performance of k-d tree with 

regards to bias decreases. 

4. Partitions are half planes. They a general 

tendency to result in more number of     affected 

points in uniformly or near-uniformly 

distributed space. 

5. No inherent merging structure. A merging 

strategy needs to be implemented 

 

The most concerning of these at that time 

for us was 1 & 2 as they were highly serial and slow 

part of our parallel implementation. We wanted to 

optimize the multiple passes over data to as few as 

possible. Also we wanted a better way to finding 

median or near median. In next part we will see how 

we tried solving 1 & 2 by splitting our d-

dimensional space into d-cubes such that in a single 

pass we determine the points in every cube & their 

cardinality and other computations which improves 

median finding performance significantly. However 

we soon realized the impractical aspects of our 

approach and it inherently lacking the solutions to 3, 

4 & 5. We moved on to next approach where we 

partition our space using n-dimensional voronoi 

diagrams and found it to be extraordinarily 

outperforming kd-tree with proper initial seeds. 

 

II. N-CUBE BASED APPROACH 
The proposed partitioning approach works 

by initially dividing the n-dimensional space into n-

Cubes by making y splits along each dimension so 

that we obtain (y+1)^n cubes. 

The basic idea here is to create an overall 

index (a close in summary in space based on cubes) 

such that for any partitioning computation, we only 

need to use this summary and not the entire data. n-

Cubes work as following 

 

Algorithm : Construct Cubes 

Input: Set of  x points p in space (p1,p2….px) where 

each px is (x1,x2..xn). 

Number of partitions m 

k : a natural number 1<=k 

# Higher values for k ensures better overall 

distribution but lower performance. 

 

Output: Set of Cubes (c1, c2 …. cm ) where m = 

(y+1)^n 

Procedure : 

# Finding an optimal y & initializing cube 

boundaries 

Let minxn be min (px) in nth dimension 

Let maxxn be max (px) in nth dimension 

Let Y = ky. Let M = (Y+1)^n 

for each ci in (c1...cM) 

Boundary(cMn)= {(i-1)*(maxn-minn)/M, i*(maxn-

minn)/M} 

Binary sort c 

For each pi in (p1...px) 

Find pi’s location in p. 

Add pi to cM 

cM.totalPonits++ 

 

Algorithm Find Median  

Input : Set of Cubes (c1...cM), Total Points 

Output : Median along a dimension n say mn 

Procedure :   

P : total ponits in space 

X=0; 

While X<P/2 

Move to next cube , x = x+Cm.totalPoints 

#We stop at the cube that contains our median (or a 

a close approximation if k is too low or too high) 

  Find median of set of points in Cm. 

 

We can see that cube creation is an 

O(n+logn) task while median creation is an O(n/M) 

task which looks very efficient . The approach 

should have worked in two passes over data plus a 

single pass on grid cells. However there were major 

design & implementation issues with this approach 

1. The number of cubes is (y+1)^n. Even if y is 2, 

for a huge n, we get 2^n cells. This grows closer 

to total number of data points. 

2. Programmatically unfeasible in direct sense. 

Accessing n-dimensional arrays needs n loops, 

we don’t know n beforehand. Solution is to 

convert n-d cells to 1 d ... (Very Very long 1 d 

array).  Unable to allocate memory on stack for 

the 1-d array. 

3. Too many cells, sparse cells, data distribution 

across cells not uniform at all.  

4. Most of the partitions will be empty, even when 

the number of data points N is large, leading to 

extreme waste of memory and CPU time.  

5. Hence we conclude that the method was Not 

Suitable for >2d data 

6. Didn’t solve problem of bias but worsened tends 

to worsen it with a higher cubes number 

 

III. VORONOI DIAGRAM BASED 

PARTITIONING 
Our second approach involves voronoi 

diagrams (Aurenhammer,1991). Our goal is to 

construct a partitioning scheme that handles high-

dimensionality as well and not just provide good 

performance by ignoring a lot of dimensions. Also it 

is necessary that partitions should not hold too many 

or too few points. Number of passes on data should 

be as less as possible preferably ~1.   

An efficient way to satisfy problem 1 & 2 

of kd-tree is a tree structure that needs O (log n) 

number of comparisons on average to distribute a 
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point and to determine the affected partitions where 

n is the number of nodes in the tree.  One way to 

satisfy problem of considering all dimensions all 

together is to use a Voronoi diagram which 

partitions the space into Voronoi cells, directed by a 

set of split points Q = q1, q2, . . . such that for each 

cell corresponding to split point qi, the points x in 

that cell are nearer to qi than to any other split point 

in Q.  

Hence, by constructing a tree of Voronoi 

diagrams, we can satisfy our two major concerns. 

Let’s call such a structure as v_tree. The 

top or root node of a v_tree gives a brief summary of 

the whole data and is split to many Voronoi cells 

which are split as well and so on. 

  

 
Figure 2: A voronoi diagram depicted in two 

dimensions 

 

Construction of v_tree 

At each level, find k (2) centre 

1. Points must be appropriately spaced and far 

2.  Use scalable kmeans++ (Bahmani et all., 2012) 

or gnat technique (Brin ,1995)  

3.  Assign all points to either centre based on 

distance 

4.  All points that lie in current to current + eps 

boundary(Goel et all., 2015) are considered 

affected. 

5.   Delete extra points stored in parent node to 

remove redundancy 

Repeat for new sets until requisite number of 

partitions found. 

 

Data Structure 

A minimal n-voronoi-tree implementation data 

structure in c will look like this. 

typedef struct member { 

int id; 

float *val; 

} member; 

struct v_node { 

int level; 

int core1,core2; 

member *mem1,*mem2,*mem_overlap; 

struct v_node *left,*right; 

int count_mem1,count_mem2, count_overlap, 

total_count;  

} 

struct v_tree { 

int levels; 

struct node *head; 

} 

Head node is the summary of Entire Data. 

Each parent node contains summary of points in 

child nodes. The exact points are stored until data is 

partitioned at level & deleted as soon as we move to 

next level. 

Note that v_tree might not necessarily be 

binary. More than two centres can be chosen. 

The leaf nodes are our final partitions , and 

going up the tree inherently makes a merging 

structure for resultant clusters. Load in each partition 

will depend upon the center chosen and distribution 

of data in n-dimensional space. 

 

How to choose initial seeds? 

1. Select randomly: Choosing centre randomly 

doesn’t guarantee or breach anything and 

simply leaves thing to the centre chosen and 

distribution of data. There is equal probability 

of getting each load distribution. Hence the 

probability of getting a perfect load balance 

tends to zero.  

2. GNAT Approach: Suppose we need n seeds. 

We start by selecting a point at random. The 

next point is chosen such that its distance from 

first point is maximum, the third point is chosen 

such that its distance from sum of previous two 

points is maximum. Similarly forth point should 

be the point farthest from sum of first three 

points and so on. This approach is good in terms 

of load balancing for a big value of n, but 

cannot guarantee good balance for small n (~2-

5). 

3.  Scalable K-Means++ Approach: Suppose k 

centre are needed, C be the set of initial seeds, 

then 

a.    Sample a point uniformly at random from the 

data points. 

b.    For each data point p, compute it’s distance 

from nearest centre. 

c.     Choose a m point p using Weighted probability 

distribution where a point p  is chosen with 

probability proportional to D(p)2. Assume it be 

new centre 

d.    If you have k centres, proceed with partitioning, 

else repeat 2 & 3 

The centres that we get tend to be close to 

the centroids of clusters present in data, assuming 

there are k-clusters. Load distribution is entirely 

dependent on the data; however we can be optimistic 

about not getting very biased distribution with real-

life datasets. 
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Such a partitioning hugely tends to reduce 

the time spent in merging the final clusters as there 

will be minimal affected points.  

4. More than 2 centre: can be used in 

implementation to satisfy various criteria.  

a.   All the above approaches (or any random or 

probability based approach) will tend to good 

balancing as we increase number of centre. This 

can be proved mathematically using induction. 

We receive a perfect balance when numbers of 

points equals number of centre i.e. each point is 

a partition. 

b.   In a case when number of partitions is not in 

power of 2. 

c.     Different number of centre at different level can 

be used for perfect guided partitioning.  

5.    How about Median: Points very close to median 

and on same axis as centre will produce exact 

partitions (similar to kd-tree), however 

complexity sumps up to O (kd-tree) +O 

(v_tree). 

 

IV. EXPERIMENTATION & RESULTS 
We used following environment to execute 

test & profile Execution Environment: - Ubuntu 

13.04, Intel Core i3 (3rd generation), 2.4GHz (2 

cores hyper threaded), 4GB RAM, 3MB L2 Cache. 

Compilation Environment: - C, gcc, gdb, gprof, 

vampir, Geany IDE .Visualization of output was 

done using geogebra.  

Test Data-sets: (no. of points x no. of 

dimensions, double precision data)  

1. 100x2,   

2. 700x9,    

3. 1500x1024,   

4. 4000x1024,   

5. 40000x1024 

 

 
Figure 3 : Comparison of v_tree partitioning result 

with four partitions 

 
Figure 4: Comparison of v_tree partitioning result 

with eight partitions 

 

We noticed an increase in load bias as 

number of partitions increase. 

Distribution was almost uniform with 

uniform data. However we can see that Kd-tree 

(right) provides a better distribution with uniformly 

distributed data. However this will decrease with 

number of dimensions. 

 

 
Figure 5 : Comparison of uniform data partitioning 

(v_tree ) 
 

 
Figure 6 Comparison of uniform data partitioning 

(k-d tree) 
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Performance (in approx ~10sec units) 

 
 

V. CONCLUSION 
A conclusion section must be included and 

should indicate clearly the advantages, limitations, 

and possible applications of the paper.  Although a 

conclusion may review the main points of the paper, 

do not replicate the abstract as the conclusion. A 

conclusion might elaborate on the importance of the 

work or suggest app We have seen that for higher 

dimensionality the approach proposed takes very 

less time as compared to kd-tree approach; however 

v_tree technique needs a load balanced variant to 

boast perfect results. 

Our future works will include better load 

balancing, comparison of merging time and 

distribution time, parallelizing the approach and 

implementing a grid based alternative.  

 

APPENDIX 
Related Code, Data Sets & Results can be requested 

from 

https://drive.google.com/file/d/0Bxo9wQ432jhla1dQ

NWFrbnM4bnc/view?usp=sharing 
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